ODR-mmbTools

Open-Source Software-Defined
DAB™ Tools

Project Documentation

Opendigitalradio
http://opendigitalradio.org
2014-2023

This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License.
See http://creativecommons.org/licenses/by-sa/4.0/ or LICENCE.txt

http://opendigitalradio.org
http://creativecommons.org/licenses/by-sa/4.0/

Contents

Contents
Contents i
Acronyms 1
1 Introduction 2
2 Purpose 2
3 Presentation of the Tools 2
3.1 Origins 2
3.2 Included Tools 3
3.2.1 ODR-DabMux 4
3.22 ODR-DabMod 4
3.2.3 ODR-AudioEnc 5
3.24 ODR-PadEnc, 5
3.2.5 ODR-EncoderManager 5
3.2.6 ODR-SourceCompanion 5
3.2.7 etisnoop 5
4 Installing the Tools 6
4.1 Debian Binary Packages 6
4.2 Opendigitalradio-provided Installation Script 6
4.3 Manual Compilation 7
5 Interfacing the Tools 8
51 Usingfiles 8
5.2 Using the Network 9
5.2.1 Between Encoder and Multiplexer 10
5.2.2 Between Multiplexer and Modulator 12
6 Usage Scenarios 13
6.1 Experimentation 13
6.1.1 Creation of Non-Realtime Multiplex 13
6.1.2 Modulation of ETI for Offline Processing 13
6.2 Interfacing Hardware Devices 13
6.2.1 EttusUSRP 13
6.2.2 SoapySDR 15
6.2.3 Other hardware 17
6.3 Audio Sources 17
6.3.1 Local Audio Card 17
6.3.2 Using Existing Web-Streams 18
6.3.3 Encoders at Programme Originator Studios 18
6.4 Advanced Signal Processing 19
6.4.1 Crest Factor Reduction 19
6.4.2 OFDM Symbol Windowing 19
6.4.3 Digital Pre-Distortion 20

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli |

Contents

7 Data Features

7.1 Programme-Associated Data

7.2 FIG 1 Labels and FIG 2 Extended Labels

7.3 Announcements
7.4 Service Linking

8 System Environment

8.1 Processing requirements
8.2 Launching thetools
8.3 Logging
84 Timing
8.5 Monitoring through SNMP
8.6 Monitoring using munin
8.7 Monitoring using Xymon

8.7.1 Installation of the Xymon Client

8.7.2 Server Configuration
8.8 Real-time Scheduling
8.9 Accessing the USRP as Non-root
8.10 Authentication Support

9 A Production Broadcast Setup

9.1 Outline.
9.2 Setupsteps

10 Single-Frequency Networks

10.1 Requirements
10.2 Multiplexer Configuration
10.3 Modulator Configuration
10.4 Using ODR LEA-M8F GPSDO board
10.5 Using Ettus GPSDO

11 Supervision of Transmitted Ensembles

11.1 Introduction
11.2 Welle.io Software-Defined Receiver

A ODR-DabMux ETI file formats
B Additional EDI TAGs used
C Bibliography

References

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli

30

........ 30
........ 30

33

........ 33
........ 33
........ 34
........ 35
........ 36

37

........ 37
........ 37

39

39

40

40

Acronyms

Acronyms

1PPS One pulse per second

CFR Crest Factor Reduction

CIF Common Interleaved Frame

CRC Communications Research Centre Canada
DAB Digital Audio Broadcasting

DMB Digital Multimedia Broadcasting

ETI Ensemble Transport Interface

ETSI European Telecommunications Standards Institute
FIC Fast Information Channel

HE-AAC High Efficiency Advanced Audio Codec
mmbTools Mobile Multimedia Broadcasting Tools
MER Modulation Error Rate

MNSC Multiplex Network Signalling Channel

NTP Network Time Protocol

oCcxo Oven-Controlled Crystal Oscillator

OFDM Orthogonal Frequency-Division Multiplexing
PAPR Peak-to-Average Power Ratio

PRBS Pseudo-Random Bit Sequence

SFN Single-Frequency Network

TCXO Temperature-Compensated Crystal Oscillator
TIST Timestamp field in the ETI frame

™ Transmission Mode

UHD USRP Hardware Driver

USRP Universal Software-Radio Peripheral

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 1

3 Presentation of the Tools

1 Introduction

This is the official documentation for the ODR-mmbTools. These tools can be
used to experiment with digital audio broadcasting (DAB) modulation, to learn
the techniques behind it, and to set up a DAB or DAB™ transmitter.

This documentation assumes that you are already familiar with the basic
concepts of the DAB system. Understanding how the DAB transmission chain
is structured is a prerequisite for getting started with the ODR-mmbTools. The
“DAB Bible” by Hoeg and Lauterbach [8], and the “Guide to DAB standards” from
the ETSI [2] can be used as a starting point.

In this document, the terms “DAB" and “DAB™" are used somewhat inter-
changeably, since many parts of the transmission chain are identical between the
two variants. In most cases, “DAB” will be used, and “DAB™" when talking about
specific details about the newer version of the standard.

2 Purpose

The individual programs that make up the ODR-mmbTools each have their own
documentation for command-line options and configuration settings, and the
opendigitalradio.org wikil contains many explanations and pointers, but there is no
single source of documentation available for the whole toolset.

This document aims to fill this gap, by first outlining general concepts, then
presenting different usage scenarios, and finally, detailing a complete transmission
setup. With this document in hand, you should be able to understand all of the
elements which go into the ODR-mmbTools transmission chain, and how to set
one up.

Please refer to the bibliography for references on any individual topic that may
need clarification, to the README files in the repositories of the tools that are
going to be presented in this guide, and if you have further questions, get in touch
with us through the mailing-list mentioned on our website.

3 Presentation of the Tools

3.1 Origins

Before we begin with technical details, first a word about the history of the
mmbTools. In 2002, Communications Research Centre Canada? started developing
a DAB multiplexer. This effort evolved through the years, and was published in
September 2009 as CRC-DabMux under the GPL open-source licence.

CRC also developed a DAB modulator, called CRC-DABMOD, which was able
to create baseband complex quadrature (I/Q) samples from files or streams in the
ETI format. This I/Q data could then be sent to a hardware device (for broadcast
or laboratory RF measurements) using another tool. For driving the universal
software-defined radio peripherals (USRP) made by the company Ettus Research,

Ihttp://opendigitalradio.org
%http://crc.ca

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 2

http://opendigitalradio.org
http://crc.ca

3 Presentation of the Tools

a “wave player” script was necessary to interface with GNURadio. Only DAB
Transmission Mode 2 was supported. CRC-DABMOD was also released under the
GPL in early 2010.

As encoders, toolame could be used for DAB, and CRC developed a closed-
source CRC-DABPLUS DAB™ encoder.

These three CRC-tools, and some additional services available on the now
unreachable website® http://mmbtools.crc. ca were part of the CRC-mmbTools.
These tools made it possible to set up the first DAB transmission experiments.

In 2012, these tools received experimental support for single-frequency networks,
a functionality that has been developed by Matthias P. Brandli during his Master's
thesis*. Because SFNs are mainly used in TM 1, CRC subsequently released a
patch to CRC-DABMOD that enabled all four transmission modes.

At that point, involvement from CRC started to decline. The SFN patch
was ultimately never included in the CRC-mmbTools, and as time passed, the
de-facto fork on http://mpb.11i was receiving more and more features. Having
two different programs with the same name made things complicated, and so, with
the approval of CRC, the tools were officially forked in February 2014, and given
the new name ODR-mmbTools. They are now developed by the Opendigitalradio
association.

In April 2014, the official CRC-mmbTools website went offline, and it has
become very difficult, if not impossible, to acquire licences for the CRC-DABPLUS
encoder. Luckily there is an open-source replacement available, which was part
of Google's Android source. This encoder has been extended with the necessary
DAB™-specific requirements (960-transform, error correction, framing, etc.), and
now exists under the name fdk-aac. The encoder ODR-AudioEnc can use this
library to encode for DAB™.

3.2 Included Tools

The ODR-mmbTools are composed of several software projects: ODR-DabMukx,
ODR-DabMod, ODR-AudioEnc, ODR-PadEnc, and other scripts, bits and pieces
that are useful when setting up a transmission chain.

3There are some snapshots of the website available on http://archive.org.
4The corresponding report is available at http://mpb.1i/report.pdf

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 3

http://mmbtools.crc.ca
http://mpb.li
http://archive.org
http://mpb.li/report.pdf

3 Presentation of the Tools

ODR-DabMod
ODR-DabMux
ODR-PadEnc
ODR- ODR-
mmbTools EncoderManager
etisnoop
ODR-
ODR- SourceCompanion

AudioEnc

Figure 1. The family of ODR-mmbTools

3.2.1 ODR-DabMux

ODR-DabMux implements a DAB multiplexer that combines all audio and data
inputs and outputs them in the form of a file in ETI format. This can be used
offline (i.e. not in real time) to generate ETI data for processing later, or for use
in a real-time streaming scenario (e.g. in a transmitter).

ODR-DabMux can read input audio or data from files (*.mp2" for DAB, “.dabp”
for DAB™), FIFOs (also called “named pipes”), or from a network connection. This
network connection can use UDP (STI-D) or EDI.

The configuration of the multiplexer is given in a configuration file, whose
format is defined in the example files in the doc/ folder inside the ODR-DabMux
repository.

3.2.2 ODR-DabMod

ODR-DabMod is a software-defined DAB modulator that receives or reads ETI
data in streams or from files, and generates modulated |/Q data which can be
used for transmission.

This I/Q data which is encoded as complex floats (32bits per complex sample)
can be written to a file or pipe, sent to a USRP device using the integrated output
for the open-source USRP Hardware Driver (UHD) or to other software-defined
radio (SDR) devices using the SoapySDR® library.

The output of the modulator can also be sent to a GNURadio flow-graph for
further processing, conversion or analysis using a ZeroMQ network connection.

Shttps://github.com/pothosware/SoapySDR/wiki

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 4

https://github.com/pothosware/SoapySDR/wiki

3 Presentation of the Tools

3.2.3 ODR-AudioEnc

The ODR-AudioEnc encoder can be used to encode for DAB and DAB™. It includes
a TooLAME-based MPEG encoder, and uses the fdk-aac library as an external
dependency to encode DAB™.

The integrated TooLAME library is an MPEG-1 Layer Il audio encoder that
is used to encode audio for the DAB standard. Another encoder called twolame
is not compatible with DAB even though it is more recent than TooLAME, and
cannot be used for our application.

The framing and error correction which are needed for DAB™, as well as
the programme-associated data (PAD) insertion, the output EDI protocol, and
the input from Advanced Linux Sound Architecture (ALSA) were then added by
different parties.

3.2.4 ODR-PadEnc

This encoder is able to generate programme-associated data (PAD) that can be
injected into ODR-AudioEnc. It supports reading and encoding Dynamic Label
Segment (DLS) from a text file, and reads images from a folder for MOT Slideshow.

3.2.5 ODR-EncoderManager

The ODR-EncoderManager presents a web-based interface that allows the user to
create, manage and run audio and PAD encoders, and presents a HT TP API to
update Dynamic Label Segment and Slides. One instance can handle several audio
encoders simultaneously, and offers a simpler way to manage the audio encoding
part of the DAB™ transmission chain.

3.2.6 ODR-SourceCompanion

This tool allows using third party audio encoders with the ODR-mmbTools.

3.2.7 etisnoop

Etisnoop is not used in the broadcasting chain directly, but is an analysis tool for
ETI, described in the ETSI standard [1]. ODR-DabMux can write an ETI file
that can be analysed with etisnoop. The tool can be used to verify the multiplex
signalling, the presence of data in the subchannels, and it can decode audio into
files.

Additionally, it can output statistics in YAML format, which is useful in combi-
nation with an RTLSDR receiver and the dab2eti tool to monitor transmissions.

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 5

4 Installing the Tools

4 Installing the Tools

There are 3 ways to install the tools.

4.1 Debian Binary Packages

If your host is running a debian-based operating system and its architecture is either
amd64, arm64 or arm/v7, then you can easily install ODR-AudioEnc, ODR-PadEnc,
ODR-DabMux and ODR-DabMod from the ODR package repository by applying
the following steps:

#replace bullseye (debian-11) with bookworm (debian-12) if
applicable

curl -fsSL http://debian.opendigitalradio.org/opendigitalradio
-bullseye.sources > /etc/apt/sources.list.d/
opendigitalradio-bullseye.sources

curl -fsSL http://debian.opendigitalradio.org/opendigitalradio
.asc | gpg --dearmor > /etc/apt/trusted.gpg.d/
opendigitalradio.gpg

apt update

sudo apt install --yes odr-audioenc odr-padenc odr-dabmux odr-
dabmod

Remarks The odr-dabmux and odr-dabmod packages do not include the web-
based GUI Mux Manager and the GUI and Digital Predistortion Computation
engine. If you need those, then you should look at the other 2 installation options
below.

4.2 Opendigitalradio-provided Installation Script
This option allows you to compile and install:
e the above 4 main components of the tools

e the web-based ODR-EncoderManager, GUI Mux Manager and GUI and
Digital Predistortion Computation engine

e sample configuration files for a live broadcast

Apply the following steps:

sudo apt update && sudo apt upgrade --yes

sudo timedatectl set-timezone your_timezone

cd ${HOME}

git clone https://github.com/opendigitalradio/dab-scripts.git
sudo bash ${HOME}/dab-scripts/install/mmbtools-get install

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 6

4 Installing the Tools

Remarks The installation script will compile the tools with all the possible features
in order to give you the greatest configuration flexibility. It will also install the
supervisord package with the configuration files for a live broadcasting of 2 dab+
programs. For more installation details, please refer to the install/README.md
file in the github repository.

4.3 Manual Compilation

If you wish to compile and install some tools only and reduce disk usage by selecting
the needed features, then you should follow the instructions given with each tool:

e odr-audioenc https://github.com/opendigitalradio/odr-audioenc
e odr-padenc https://github.com/opendigitalradio/odr-padenc
e odr-dabmux https://github.com/opendigitalradio/odr-dabmux

e odr-dabmod https://github.com/opendigitalradio/odr-dabmod

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli

5 Interfacing the Tools

5 Interfacing the Tools

5.1 Using files

The first versions of these tools used files and pipes to exchange data. For offline
generation of a multiplex or a modulated 1/Q), it is possible to generate all files
separately, one after the other.

Here is an example to generate a two-minute ETI file for a multiplex containing
two programmes:

e one DAB programme at 128kbps
e one DAB™T programme at 88kbps

We assume that the audio data for the two programmes is located in uncom-
pressed 48kHz WAV in the files progl.wav and prog2.wav. The first step is to
encode the audio. The DAB programme is encoded to progl.mp2 using:

odr-audioenc --dab -b 128 -i progl.wav -o progl.mp2

The DAB+ programme is encoded to prog2.dabp. The extension .dabp is
arbitrary, but since the framing is not the same as for other AAC encoded audio, it
makes sense to use a special extension. The command is:

odr-audioenc -i prog2.wav -b 88 -o prog2.dabp

These resulting audio files can then be used with ODR-DabMux to create
an ETI file. ODR-DabMux supports many options, which makes it much more
practical to set a configuration file rather than using very long command lines.
Here is a short file that can be used for the example, which will be saved as
2programmes . mux:

general {
dabmode 1
nbframes 5000
Iy
ensemble {
id Ox4fff
ecc Oxec ; Extended Country Code

local-time-offset auto
international-table 1
label "mmbtools"
shortlabel "mmbtools"

}

services {
srv-pl { label "Progl" }
srv-p2 { label "Prog2" }

}
subchannels {
sub-pl {
type audio

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 8

5 Interfacing the Tools

inputfile "progl.mp2"
bitrate 128

id 10

protection 5

b
sub-p2 {
type dabplus
inputfile "prog2.dabp"
bitrate 88
id 1
protection 1
by
Iy
components {
comp-pl {
service srv-pl
subchannel sub-pl
b
comp-p2 {
service srv-p2
subchannel sub-p2
by
I

outputs { outputl "file://myfirst.eti?type=raw" }

This file defines two components, that each link one service and one subchannel.
The IDs and different protection settings are also defined. The bitrate defined in
each subchannel must correspond to the bitrate set at the encoder.

The duration of the ETI file is limited by the nbframes 5000 setting. Each
frame corresponds to 24 ms, and therefore 120/0.024 = 5000 frames are needed
for 120 seconds.

The output is written to the file myfirst.eti in the ETI(NI) format. Please
see Appendix A for more options.

To run the multiplexer with this configuration, run:

odr-dabmux 2programmes.mux

This will generate the file myfirst.eti, which will be 5000 % 6144 ~ 30MB in
size.

Congratulations! You have just created your first DAB multiplex! With the
configuration file, adding more programmes is easy. More information is available
in the doc/example.mux

5.2 Using the Network

In a real-time scenario, where the audio sources produce data continuously and
the tools have to run at the native rate, it is not possible to use files anymore
to interconnect the tools. For this usage, a network interconnection is available
between the tools.

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 9

5 Interfacing the Tools

The standard protocol to carry both contribution (from audio encoder to
multiplexer) and distribution (from multiplexer to modulator) is EDI, specified by
ETSI [4]

EDI can be carried over UDP or other unreliable links, and offers a protection
layer to correct bit-errors. Over network connections where the occasional conges-
tion can occur, EDI can also be carried over TCP, which will ensure lost packets
get retransmitted. Unless you are able to guarantee reserved bandwidth for the
EDI traffic, using TCP is the safer option.

While the main reason to use EDI is to put the different tools on different
computers, it is not necessary to do so. It is possible, and even encouraged to use
this interconnection locally on the same machine, for increased flexibility.

5.2.1 Between Encoder and Multiplexer

Between ODR-AudioEnc and ODR-DabMux, the EDI protocol carries DABT
superframes or DAB frames, with additional metadata that contains the audio level
indication, a version field and a free-form identifier string for monitoring purposes.®
The multiplexer cannot easily derive the audio level from the encoded bitstream
without decoding it, so it makes more sense to calculate this in the encoder and
carry it along the encoded data.

The first step is to encode the 2 audio programs with the output set for EDI.
Assuming that both encoders and multiplexer run on the same host:

odr-audioenc --dab -i progl.wav -b 128 -e tcp://localhost:9001
odr-audioenc -i prog2.wav -b 88 -e tcp://localhost:9002

On the multiplexer configuration file, the subchannel must be configured for
EDI as follows:

subchannels {
sub-pl {
type audio
bitrate 128
id 10
protection 5
inputproto edi
inputuri "tcp://*:9001"
buffer-management prebuffering
b
sub-p2 {
type dabplus
bitrate 88
id 1
protection 1
inputproto edi
inputuri "tcp://*:9002"
buffer-management prebuffering

3

6This metadata is carried in the custom EDI TAGs ODRv and ODRa.

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 10

5 Interfacing the Tools

The EDI input supports several options in addition to the ones of a subchannel
that uses a file input. The options are:

e inputuri: This defines the interface and port on which to listen for incoming
data. It must be of the form <proto>://*:<port>, with proto may be
either tcp or udp.

e buffer-management: Two buffer management approaches are possible with
EDI:

— prebuffering ignores timestamps and pre-buffers some data before it
starts streaming. This allows to compensate for network jitter.

— timestamped takes into account the timestamps carried in EDI, in-
serting the audio into the ETI frame associated to that same time
stamp.

e buffer: (Both buffer management settings) The input contains an internal
buffer for incoming data. The maximum buffer size is given by this option,
the units are frames (24 ms). Therefore, with a value of 40, you will have a
buffer of 40 * 24 = 960 ms. The multiplexer will never buffer more than this
value, and will discard data when the buffer is full.

e prebuffering: (Only in buffer management prebuffering) When the
buffer is empty, the multiplexer waits until this amount of frames are available
in the buffer before it starts to consume data.

The goal of having a buffer in the input of the multiplexer is to be able to
absorb network latency jitter: Because IP does not guarantee anything about the
latency, some packets will reach the encoder faster than others. The buffer can
then be used to avoid disruptions in these cases, and its size should be adapted to
the network connection. In both buffer management techniques, it is a trade-off
between absolute delay and robustness. When using pre-buffering, you directly
control size of the buffer, and you set it to a value depending on your network
delays. When using timestamped buffer management, the size of the input buffer
is a consequence of the effective delay you set in the timestamps.

If the encoder is running remotely on a machine, encoding from a sound card,
it will encode at the rate defined by the sound card clock. This clock will, if no
special precautions are taken, be slightly off frequency. The multiplexer however
runs on a machine where the system time is synchronised over NTP, and will not
show any drift or offset. Two situations can occur:

Either the sound card clock is a bit slow, in which case the input buffer in
the multiplexer will fill up to the amount given by prebuffering, and then start
streaming data. Because the multiplexer will be a bit faster than the encoder, the
amount of buffered data will slowly decrease, until the buffer is empty. Then the
multiplexer will enter prebuffering, and wait again until the buffer is full enough. This
will create an audible interruption, whose length corresponds to the prebuffering.

Or the sound card clock is a bit fast, and the buffer will be filled up faster
than data is consumed by the multiplexer. At some point, the buffer will hit the
maximum size, and one frame will be discarded. This also creates an audible glitch.

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 1 1

5 Interfacing the Tools

Consumer grade sound cards have clocks of varying quality. While these glitches
would only occur sporadically for some, bad sound cards can provoke such behaviour
in intervals that are not acceptable, e.g. more than once per hour.

Both situations are suboptimal, because they lead to audio glitches, and also
degrade the ability to compensate for network latency changes. It is preferable to
use the drift compensation feature available in ODR-AudioEnc, which insures that
the encoder outputs the encoded bitstream at the nominal rate, aligned to the
NTP-synchronised system time, and not to the sound card clock. The sound card
clock error is compensated for inside the encoder.

Complete examples of such a setup are given in the scenarios.

5.2.2 Between Multiplexer and Modulator

The EDI protocol can also carry data of a complete ensemble from ODR-DabMux
to one or more instanced of ODR-DabMod.

On the multiplexer configuration file, the output must be configured for EDI as
follows:

outputs {
edi {
destinations {
edi_tcp {
protocol tcp
listenport 9201
}
+
+

; Throttle output to real-time (one ETI frame every 24ms)
throttle "simul://"

In case you wish to interface ODR-DabMux with a modulator that does not
support EDI over TCP, but your network is not stable enough to use UDP, you can
use ODR-EDI2EDI. See http://github.com/Opendigitalradio/0DR-EDI2EDI
for information about that tool.

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 12

http://github.com/Opendigitalradio/ODR-EDI2EDI

6 Usage Scenarios

6 Usage Scenarios

6.1 Experimentation
6.1.1 Creation of Non-Realtime Multiplex

The creation of a ETI file containing two programmes, one DAB and one DAB™ is
covered in section 5.1.

6.1.2 Modulation of ETI for Offline Processing

The ETI file generated before can then be used with ODR-DabMod to produce a
file containing 1/Q samples. Here, we must chose between using the command
line or the configuration file. For a very simple example, using the command line
makes sense, but for more advanced features it is preferable to use a configuration
file. For illustration, we will present both.

To modulate the file myfirst.eti into myfirst.iq, with the default options,
the command is simply

odr-dabmod myfirst.eti -f myfirst.iq -n 1

This will create a file containing 32-bit interleaved 1/Q at 2048000 samples per
second. Where the maximal amplitude is bounded by 1.The transmission mode is
defined by the ETI file.

The equivalent configuration file would be

[input]
transport=file
source=myfirst.eti

[output]
output=file

[fileoutput]
format=complexf
normalize=1
filename=myfirst.iq

This is a very minimal file that defines only the necessary settings equivalent to
the above command line options. The configuration file however supports more
options that the command line, and becomes easier to manager once the set
becomes more complex. It is best to use the example configuration available in
the doc/ folder.

6.2 Interfacing Hardware Devices
6.2.1 Ettus USRP

ODR-DabMod integrates support for the UHD library that can interface with all
USRP devices from Ettus. The following configuration file mod. ini illustrates how
to send the myfirst.eti over a USRP B200 on channel 13C:

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 13

6 Usage Scenarios

[remotecontrol]
telnet=1
telnetport=2121

[input]
transport=file
source=myfirst.eti
loop=1

[modulator]
digital_gain=0.8

[firfilter]
enabled=1

[output]
output=uhd

[uhdoutput]
master_clock_rate=32768000
type=b200

txgain=40

channel=13C

This example also shows more options that the example for the file output:

remotecontrol telnet=1 enables the Telnet server that can be used to
set parameters while the modulator is running.

loop=1 rewinds the input file when the end is reached. The same ETI file
will be transmitted over and over.

digital_gain=0.8 reduces the output sample deviation, to reduce com-
pression in the USRP.

firfilter enabled=1 enables the FIR filter to improve the spectrum mask.
If you want to customise the filter used, you can create your own filter taps
file using ODR-DabMod/doc/fir-filter/generate-filter.py.

master_clock_rate=32768000 sets the USRP internal clock to a multiple
of 2048000, which is required if we want to use the native DAB sample rate.

txgain=40 Sets the analog transmit gain of the USRP to 40dB, which is
specific to the B200. If you go above 70dB you will start to see nonlinearities.

Some of these options are not necessary for the system to work, but they
improve the performance.

Remarks concerning the USRP B200 The USRP B200 depicted in figure 2
is the device we are using most. It's performance is proven in a production
environment, it supports the transmit synchronisation necessary for SFN and is
robust enough for 24/7 operation.

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 14

6 Usage Scenarios

However, care has to be taken about the host
system, especially about the USB controller.
Using USB 2.0 is not a problem for a DAB
transmission, both USB 2.0 and USB 3.0 host
controllers can therefore be used. Since USB 2.0
has been around for longer and is more mature,
it is sometimes preferable because it causes less
USB errors. This heavily depends on the exact
model of the USB controller inside the host PC, Figure 2: Ettus USRP B200
and has to be tested for each system.

The txgain on the B200 varies between 0dB and about 90dB. Experience shows
that compression effects begin to appear at values around 85dB. This might be
different from device to device and needs to measured.

Similarly, the digital gain must be optimised for a given setting. It is important
that there is no digital clipping in the chain, because that leads to problematic
spurious spectrum components, that can disturb or even damage a power amplifier.

There are some performance measurements available on the Opendigitalradio
wiki.”

Remarks concerning other USRP models We have used the USRP1, the
USRP2 and the USRP B100 with the tools. The WBX is the most appropriate
daughterboard for these models.

The txgain setting has another range, it is best to start at 0dB, and increase
it in steps of 3dB or smaller while measuring the output signal, until the correct
power is reached.

6.2.2 SoapySDR

ODR-DabMod supports other radio interfaces using the SoapySDR® vendor-neutral
and platform independent library to drive SDR devices. It can be used to drive
the LimeSDR boards, the HackRF from Great Scott Gadgets and the Fairwaves
XTRX devices, among others. Installation dependencies are shown in the INSTALL
file, and an example configuration is in doc/example.mux.

We are going to illustrate this with the HackRF. The HackRF is an entry
level yet versatile SDR which provides coverage between ~ 10MHz to 6GHz, and
DAB signals been successfully generated with it in VHF Band Il (174—240MHz),
L-Band (1462-1467.5MHz) and even the worldwide ISM Band (2400-2500MHz).
The latter (subject to local regulations) is a licence exempt band which may be
useful for performing freely radiating tests at low power. Cheap MMDS converters
are currently available which helpfully provide a Band Ill IF output providing a
direct feed to the aerial input of a receiver. Before choosing a converter it is
important to pay close attention to the specifications. The local oscillator phase
noise performance, and the dynamic range (due to the heavy use of the band) are
both particularly important.

The HackRF has selectable baseband filters, however the lowest filter setting
(1.75MHz) does not provide adequate image rejection at the native sampling rate

"http://wiki.opendigitalradio.org/index.php/USRP_B200_Measurements
Shttps://github.com/pothosware/SoapySDR/wiki

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli]_5

http://wiki.opendigitalradio.org/index.php/USRP_B200_Measurements
https://github.com/pothosware/SoapySDR/wiki

6 Usage Scenarios

of 2048k samples per second. An appropriate rate to start with is 4096k, and
for some purposes this may well be adequate as this moves the image signals
generated within the radio far enough into the stop-band of filter to attenuate
them significantly. Since ODR-DabMod v1.0.1, the digital gain setting is not be
influenced by the sample rate anymore, and should be set below 1, with some
margin, to avoid digital clipping on modulation peaks.

Depending on the capabilities of the host computer, using higher sampling rates
(6144k, and even 8192k) may be possible. This oversampling is desirable as it
helps to produce a cleaner spectral output. At higher rates one needs to ensure
that samples are not being dropped on the USB and that CPU resources are not
being contended.

The shoulder performance has been measured with a value at a little better than
35dB, which is roughly equivalent to that obtained from first generation commercial
modulator equipment. This can be increased to a relatively respectable =~ 40dB by
enabling the FIR baseband filter in ODR-DabMod. The maximum output power
available to meet these performance figures is approximately —10dBm RMS.

The following configuration file mod. ini illustrates how to send the myfirst.eti
over a HackRF on channel 13C:

[remotecontrol]
telnet=1
telnetport=2121

[input]
transport=file
source=myfirst.eti
loop=1

[modulator]
digital_gain=0.8
rate=4096000

[firfilter]
enabled=1

[output]
output=soapysdr

[soapyoutput]
device=driver=hackrf
master_clock_rate=32768000
txgain=23

channel=13C
bandwidth=1750000

For other SoapySDR hardware, the available device-driver, sampling rates, the
TX gain range and the antenna selection can be discovered using the SoapySDRUtil
-probe command.

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 16

6 Usage Scenarios

6.2.3 Other hardware

For devices that are not offering a SoapySDR device driver, the last resort is to
use standard output or a fifo to carry the |IQ data from ODR-DabMod to a tool
that can drive the device.

Example of the settings in the mod. ini file suitable for use with Pipe:

[remotecontrol]
telnet=1
telnetport=2121

[input]
transport=file
source=myfirst.eti
loop=1

[modulator]
digital_gain=0.8
rate=4096000

[firfilter]
enabled=1

[output]
output=file

[fileoutput]
format=complexf
filename=/tmp/ofdm.fifo

The output fifo has to be created beforehand.
Example of using ODR-DabMod with a Pipe-driven device transfer utiliy:

mkfifo /tmp/ofdm.fifo
odr-dabmod mod.ini &
device-utility --arguments

6.3 Audio Sources

Preparing a DAB multiplex with different programmes requires that we are able
to read and encode several audio sources. We have seen in section 5.2.1 how the
encoders can be interfaced to the modulator. In this section we'll go through the
different ways to carry the audio data to the encoder.

6.3.1 Local Audio Card

It is possible to use an audio card connected to the computer as source. For very
simple scenarios, the ALSA input for ODR-AudioEnc is easiest to set up. This
however limits the usage of a single encoder per sound-card, and will not scale well
if more than one programme has to be encoded on the machine. It is however ideal

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 17

6 Usage Scenarios

for dedicated encoding machines that can contribute the encoded audio over an IP
network.

An alternative to using ALSA is JACK® that can be used with a multi-channel
sound card. JACK will expose every audio input channel, and several encoders
can be launched that also connect to JACK. The input channels can be freely
connected to the encoders thanks to the virtual JACK patch panel.

6.3.2 Using Existing Web-Streams

One common scenario is to transmit radio stations that already are available as
web-radio streams. For simplicity, it makes sense to get these web streams, which
are most often encoded in mp3 and available through HT TP, decode them, and
use them as audio source for the DAB or DAB™ encoder.

The advantage of this approach is that the radio itself does not need to setup a
new infrastructure if the stream is of good quality. The main disadvantage is that
the audio is encoded twice, and this coding cascading degrades the audio quality.

Often, web-streams are encoded in mp3 at 44100Hz sample-rate, whereas
DAB is most often 48000Hz or sometimes 32000Hz. A sample-rate conversion is
necessary in the stream decoder.

There are many different stream decoders, and gstreamer, mpg123 and mplayer
have been tested. By far the easiest way is to use the libVLC binding that can
be compiled for ODR-AudioEnc. This library has the same features as the VLC
audio player, but the audio data is directly passed to the encoding routines. This
allows the encoder to receive all network sources VLC supports, not only HTTP
web-streams but also less common setups e.g. encoded audio inside multicast UDP
MPEG-TS. This is illustrated in “Studio A" in figure 3.

We have also achieved good results with mplayer, and the dab-scripts reposi-
toryl® contains the script encode-jack.sh that uses mplayer, and illustrates how
it is possible to encode a web-stream to DABT. JACK is used to interconnect the
stream decoder to the DAB* encoder. This is illustrated in “Studio B".

The scripts are designed for production use, and also contain automatic restart
logic in case of a failure. They send an email and write a message into the system
log.

6.3.3 Encoders at Programme Originator Studios

In order to avoid the unavoidable encoder cascading when using mp3 web-streams,
the DAB or DAB™ encoder has to be moved to the programme originator’s
premises, and should directly encode the audio signal coming from the studios.
This is illustrated in “Studio C” in figure 3.

If “Studio C" is able to prepare slides for MOT Slideshow and text to be sent
as DLS, ODR-PadEnc can be used to prepare the PAD data for ODR-AudioEnc.

9The JACK Audio Connection Kit is a virtual audio patch, http://www.jack-audio.org
Onttp://github. com/Opendigitalradio/dab-scripts

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 18

It might be possi-
ble to use the lib-
VLC input too, to
be defined.

http://www.jack-audio.org
http://github.com/Opendigitalradio/dab-scripts

6 Usage Scenarios

|Studio A | |Studio B | | Studio C | | DLS and Slides|
I I
| stream enc | | stream enc | | ODR-AudioEnc <_| ODR-PadEnc |
HTTP HTTP EDI Programme originators
- o Multiplex operator
libvLC stream dec 2
g
ODR-AudioEnc ODR-AudioEnc §
l EDI EDI
. EDI
Multiplexer Modulator device Analog
ODR-DabMux > ODR-DabMod Vi stuff

Figure 3: Three common ways to encode a remote audio sources.

6.4 Advanced Signal Processing
6.4.1 Crest Factor Reduction

ODR-DabMod contains a prototype for crest factor reduction (CFR), which allows
you to reduce peak-to-average power ratio (PAPR), trading off with modulation
error rate (MER). The DAB OFDM signal has a very high PAPR, which directly
translates to a decrease in power amplifier efficiency. The power amplifier has to
be driven such that the peaks do not drive it into compression, but the overall
efficiency is calculated from the average power. Reducing the PAPR makes it
possible to drive the amplifier more.

The CFR algorithm works in the following way: all the generated OFDM samples
go through a limiter, which clips the amplitude to a configurable value. This directly
reduces PAPR, but impacts both amplitude and phase of the constellation points,
thereby degrading MER. To compensate for this, a second step of the algorithm
calculates the error vector for each constellation point, and clips the error to some
maximum amplitude. The clipped error is then subtracted from the signal, which
corrects part of the distortion created by the limiter.

To summarise: a low clipping value distorts the signal more; a high error clipping
value corrects the distortion again. In the constellation plot view, the first is seen
as an increase in spread of the points; the second is visible because it pulls the
constellation points back into a circle of radius proportional to the error clipping
value.

Settings and some statistics are available through the remote control.

6.4.2 OFDM Symbol Windowing

One technique to improve the shoulder performance is to avoid generating abrupt
transitions between the OFDM symbols, but apply cross-fading from one symbol

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 19

6 Usage Scenarios

to the next using a windowing function.!

This feature can be enabled by setting the number of samples to use for
overlapping one symbol with the next one, the default value is 10 (out of a total
symbol length of 2552 samples in Transmission Mode |). Refer to the parameter
ofdmwindowing in the file doc/example.ini for instructions.

As this windowing feature modifies samples that are in the guard interval, the
trade-off is reduced resilience against delayed reflections, reduced maximum trans-
mitter delay difference in an SFN scenario, and potentially diminished robustness
against Doppler spread.

6.4.3 Digital Pre-Distortion

An ongoing activity is the development of a method to characterise a power amplifier
and predistort the |/Q samples to invert the distortion behaviour of the amplifier.
More information about this work is in the dpd/README . md file in ODR-DabMod.

11As of ODR-DabMod v1.0.1, this feature is still in the next development branch, and not
part of a released version.

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 20

7 Data Features

7 Data Features

7.1 Programme-Associated Data

It is possible to encode Dynamic Label Segment and Slideshow using ODR-PadEnc,
and to inject the PAD data into the audio encoder.

ODR-AudioEnc and ODR-PadEnc need to be launched with the same PAD
socket identifier, and they will be able to communicate. The PAD length specifies
the amount of data that is taken away from audio and used for PAD. Valid values
are 6, and the range 8 to 196. When not transmitting slides, small PAD lengths are
perfectly suitable. When using slides, it is better to use values around 30. Higher
lengths will of course accelerate the transmission of the slide at the expense of
reduced audio quality during the transmission time.

ODR-PadEnc will itself only take DLS and slides from files on the system it
runs on. If your playout system is able to push updates using FTP, you will need
to configure and FTP server to present the right folder.

A more modern approach is offered by ODR-EncoderManager, which will not
only configure and run your encoders, but also present you an HTTP API to update
DLS and upload slides. More information is available in its README.

7.2 FIG 1 Labels and FIG 2 Extended Labels

The specification offers two ways to carry ensemble, service and component labels:
through FIG 1 and through FIG 2, specified in clauses 5.2.2.2 and 5.2.2.3 of ETSI
EN 300 401 [6].

Most receivers are only able to show FIG 1 Labels encoded in the Complete
EBU Latin character set (defined in ETSI TS 101 756 clause 5.2 [7]). Some are
able to display Unicode FIG 1 Labels, encoded either in UTF-8 or UCS-2, and, as
of early 2019, receiver support for FIG 2 Extended Labels is practically absent.

The main downside of carrying Unicode FIG 1 Labels is the length limitation:
16 bytes will only encode eight characters in alphabets that require two bytes per
character. FIG 2 supports up to 32 bytes labels to alleviate this.

The intention is that new ensembles in countries requiring labels in non-latin
alphabets transmit only FIG 2 Extended Labels, whereas currently operating ensem-
bles keep transmitting FIG 1 Labels. This entices receiver manufacturers to support
FIG 2 without impacting functionality of receivers currently in use. Transmitting
both FIG 1 and FIG 2 is discouraged by the specification.

The way FIG 2 is encoded has been redefined, which is why ODR-DabMux
supports two variants: FIG 2 with character flag being the old variant, and FIG 2
with text control that will become the default variant.

7.3 Announcements

The ODR-DabMux multiplexer supports the insertion of FIG 0/18 and FIG 0/19
that are used to define and trigger announcements according to ETSI TR 101
496-2 Clause 3.6.8 [3]. An example configuration is available in the ODR-DabMux
repository, in doc/advanced .mux.

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 2 1

7 Data Features

The best known application for announcements is traffic information, but other
kinds of announcements can also be signalled. ODR-DabMux allows triggering the
announcements through the telnet and ZMQ remote control interfaces.

7.4 Service Linking

ODR-DabMux also supports the ability to inform receivers about other ways
to receive a given service, through the FIGs 0/6, 0/21 and 0/24. FIG 0/6
communicates the identifiers of services linked together, 0/21 informs the receiver
about other frequencies, and 0/24 includes information about other DAB ensembles
carrying the linked service. Their interaction is outlined in ETSI TS 103 176 [5].

You will find an example configuration in the ODR-DabMux repository, in
doc/servicelinking.mux.

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 22

8 System Environment

8 System Environment

In this section, we describe the system configuration requirements for the continuous
operation of the tools. The production environment differs in some respects to
those used for experimentation and in laboratory testing. Monitoring, automatic
recovery (in case of errors) and resilience are crucial in 24/7 operations. The term
production environment will be used here to refer to such use.

8.1 Processing requirements

The tools have differing requirements regarding CPU performance and amount of
memory, and while the performance of most desktop PCs is sufficient to run the
tools, it is important to take the requirements in consideration when setting up a
system. Memory requirements are easily met with 1GB of RAM, so we'll look at
CPU more in depth.

The most resource-consuming part is the modulator ODR-DabMod. The
following impact its CPU usage: number of sub-channels; enabling of the resampler;
enabling crest factor reduction; enabling the predistorter. Compilation options to
optimise ODR-DabMod for your system are described in the README. While you
should have no trouble running it even on an older desktop PC, the computing
power of embedded ARM boards (like the Raspberry Pi) could be insufficient,
especially if the resampler is needed.’® When using a USB SDR device, the USB
controller can have a large impact on the robustness of the transmission, even if
CPU usage is low. Such issues are visible as underruns during operation: with a
good controller, less than one underrun per day is easily achievable on a machine
dedicated to only this task. When using a graphical interface at the same time,
interaction with the user interface can also trigger underruns. For a production
system, it is better if no graphical user interface is running. In any case, it is
required to evaluate a given system over several days if reliable operation is to be
proven.

The multiplexer ODR-DabMux mostly rearranges data internally, and doesn't
do much processing. Its resource requirements are low and it runs well on small
systems. The same goes for ODR-PadEnc, ODR-EDI2EDI, ODR-zmq2edi and
ODR-zmg?2farsync.

Audio encoding using ODR-AudioEnc is in-between ODR-DabMux and ODR-
DabMod in terms of resource usage, and running one encoder is not a problem
even on small embedded ARM boards. However, you might want to run a dozen
encoders on a single machine, where you will have to plan for more headroom.

In general, for a robust 24/7 system, you should strive for a CPU usage
below 50%, regardless of which tools you are using. This gives you headroom for
monitoring, remote administration and background jobs run by cron. Once your
system is in operation, monitoring performance and observing logs is essential to
assess the health of your transmission.

125ee section 6.2.2 for an example.

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 23

8 System Environment

8.2 Launching the tools

Services running in a production environment are usually administered remotely,
and must be able to run without user intervention, or connection. Traditionally,
such services are implemented (in UNIX terminology) as ‘daemons’. These are
started and stopped using the init system contained within the distribution. As the
ODR-mmbTools cannot daemonise themselves, a process supervisor is used.

supervisord One possibility is to use supervisord13 which can launch the tools
and monitor their proper execution. It will restart the processes and optionally
inform the operator by email.

Once installed, supervisord reads its configuration file in /etc/supervisor.conf
and launches the processes that are to be monitored. Each process is described by
a file. The following example assumes the tools are run as user odr, and that the
multiplex configuration is in /home/odr/config.mux, and that ODR-DabMux is
to be launched. The standard output and standard error streams of ODR-DabMux
are written to the specified log files.

[program: ODR-DabMux]

command=odr-dabmux config.mux
directory=/home/odr

user=odr

autostart=true

autorestart=true
stdout_logfile=/home/odr/logs/mux.out.log
stderr_logfile=/home/odr/logs/mux.err.log

Once this configuration has been added to the supervisord configuration, the
settings have to be re-read using:

supervisorctl reread

In order for supervisord to start managing and running this process, it needs to
be added:

supervisorctl add ODR-DabMux

Setting up more processes (such as any of the other tools) can be easily
achieved by customising the configuration template above. Examples are provided
in the mmbtools-aux repository, under the supervisor folder - these need to be
changed to reflect the paths that are in use on your system.

supervisord also includes a small web-server that can display the state of the
managed processes. It is enabled with the [inet_http_server] setting in the
configuration file.

systemd Most recent GNU/Linux distributions use systemd as init system, which
also can handle the supervision of processes. To achieve this, systemd unit files have
to be written for the tools. For more information, see the systemd documentation.

Bnttp://supervisord.org

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 24

Give an example
unit file

http://supervisord.org

8 System Environment

8.3 Logging

Collecting information about events is essential within a production environment.
This information is essential forensic analysis, and tracing sources of trouble. This
is achieved through the logging of important messages that can be sent by the
tools.

ODR-DabMux and ODR-DabMod both support logging to standard error, to
a file and to the system logger syslog. Logging to syslog is the most flexible
approach; log information can be forwarded over the network to a centralised
logging server - where logs can then be filtered according to the priority of each
message. Both tools log to the LOCALO facility which in turn can be redirected
into an ODR-mmbtools specific log file.

In order to avoid the log files from becoming undesirably large, logrotate
should be set to rotate the files automatically.

8.4 Timing

The ODR-mmbTools require the system time to be accurate in order for them to
function correctly - this is especially important when running a SEN, but is also
important for standalone transmitters when in a production environment. It is also
important to remember that most receivers have a clock that is synchronised to
the clock time which is being transmitted by the multiplex to which it has been
tuned.

The system needs to run a NTP client that synchronises the system time over
the network. Correct synchronisation can be checked using chronyc tracking
or the the 1peers command of the ntpq tool, depending on if you use chrony or
openntp. The magnitude of the offset should be below 10 ms.

The performance of the NTP synchronisation should also be monitored perma-
nently during operation.

ODR-DabMux can run a command at startup to verify if the NTP client
is properly working, using the startupcheck setting. This can be used to call
ntp-wait or chronyc waitsync to wait for proper NTP sync.

8.5 Monitoring through SNMP

There is ongoing work to make the monitoring of the tools possible using SNMP.
Please see https://wiki.opendigitalradio.org/SNMP for information about
this effort.

8.6 Monitoring using munin

The Munin'* monitoring tool can create graphs for essential system health pa-
rameters. It can also send emails if values transgress the defined bounds - this
assists the operator in the assessment of system status, as well as the health of
the services.

Yhttp://munin-monitoring.org/

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 25

Describe rsyslog
configuration

Describe logrotate
configuration

https://wiki.opendigitalradio.org/SNMP
http://munin-monitoring.org/

8 System Environment

In addition to basic system measurements like CPU, RAM and disk usage, NTP
synchronisation, disk and network performance, there are custom data sources
available for ODR-DabMux and ODR-DabMod.

The ODR-DabMux data sources include EDI and ZMQ input buffer monitoring
(buffer level, underruns and overruns) and the peak audio input levels (mono, or
stereo). The plugin for ODR-DabMod can monitor SDR device statistics among
others.

The plugins are written in python and are located in the doc folder in the
repositories. Copy them to /etc/munin/plugins.d and restart munin-node. They
require that the ODR-DabMux management server, and the ZeroMQ remote
control enabled on the ports give in the example configurations.

8.7 Monitoring using Xymon

The xymon monitoring tool'® is used to monitor the health of many types of
systems. It can present the results in text, tables and/or graphs. It supports the
basic health checks directly out of the box, and can be extended with scripts to
perform non-standard health checks. The default mode of operation is that clients
retrieve data and send it to the xymon server, which interprets the results, displays
them and generates alerts if thresholds are exceeded. An alert can be send in an
e-mail, an SMS or a tweet.

The Perl script retodrs.pl°, retrieves the status and statistics of an Opendig-
italradio service and it reports the results to xymon. The information is retrieved
from the management server within ODR-DabMux. The information presented
includes a table with the status of each sub-channel and the underrun and overrun
rates on the sub-channels. If needed an alert can be generated depending on the
subchannel status or a rate exceeding a threshold.

The script needs to be installed on the same server running ODR-DabMux,
as the management service within it is only accessible from the same computer.
This implies that the xymon client software also needs to be installed on the same
machine. The client is configured to run the script. The configuration and the
scripts can typically be found in subdirectory /usr/1lib/xymon/client, although
that may depend on your distribution.

Once the client is set up, it needs to connect to a xymon server, which may or
may not be on the same machine. The server is configured to limit the altering
to specific sub-channels, to store the statistical data and to generate graphs.
The configuration and the scripts on a xymon server are usually stored in the
subdirectory /usr/lib/xymon/server.

8.7.1 Installation of the Xymon Client

The perl script has additional requirements: App: :cpanminus, ZMQ: :LibZMQ3,
and JSON: :PP. They can be installed through your distribution packages or using
CPAN.

Once the script has been copied to /usr/1ib/xymon/client/ext, the config-
uration of the launcher within the xymon client needs to be extended. Create a

http://xymon.sourceforge.net/
16The script name stands for "Retrieve Opendigitalradio Status"

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 26

http://xymon.sourceforge.net/

8 System Environment

new file named odrmux.cfg in /usr/1lib/xymon/client/etc/clientlaunch.d
containing the following lines:

#
Test odrmux checks the state and the statistics
of the ODR-DabMux service.
#
[odrmux]
ENVFILE $XYMONCLIENTHOME/etc/xymonclient.cfg
CMD $XYMONCLIENTHOME/ext/retodrs.pl
LOGFILE $XYMONCLIENTLOGS/retodrs.plog
INTERVAL 5m

After a restart of the xymon client, the script retodrs.pl will be invoked once
every 5 minutes.

8.7.2 Server Configuration

By default all subchannels will be monitored, and will raise alerts if the status or the
statistics are in outside of a valid operational range. The alerting can be limited to
a subset of the sub-channels by adding a tag to the hosts-entry in the configuration
file /usr/lib/xymon/server/etc/hosts.cfg. The additional tag is:

ODR:select (<SubChannelName0O>;<SubChannelNamel>;...)

The sub-channels not named will still be shown, but no alerts will be generated
for those sub-channels. This is visible as the green/yellow/red icons are missing
for those sub-channels.

Six statistic values are gathered by the script, namely BufferMin, BufferMax,
PeakLeft, PeakRight, UnderRun and OverRun. It is found that only the latter
two seem to contain sensible values all the time, so those values are the only ones
shown in a graph. Note that those values retrieved by the script are ever-increasing
counters, showing the total number of over-runs or under-runs. In the graph, the
average number of over-runs or under-runs per second, averaged over a period of 5
minutes, is shown.

The first step is to have the collected statistics to be moved into a database, a so-
called Round Robin Database. This is accomplished by adding a file named odr.cfg
in /usr/lib/xymon/server/etc/xymonserver.d containing the following lines:

TEST2RRD+=", odr_mux=devmon"
GRAPHS+=" ,odr_mux: :1"

The next step is to define the layout of the graph. Create a file named
graphs.odr.cfg in /usr/lib/xymon/server/etc/graphs.d containing the fol-
lowing lines:

#
Graphs to show the statistics collected from an
Opendigitalradio DabMux server.
#
[odr_mux]
FNPATTERN ~odr_mux\.(.+)\.rrd$

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 27

8 System Environment

TITLE , Frame loss rate

YAXIS Rate [/s]

-1 0

DEF : ur@RRDIDX@=Q@RRDFN@: Underrun: AVERAGE
DEF : or@RRDIDX@=Q@RRDFN@: Overrun: AVERAGE
LINE1 :ur@RRDIDX@#FFO000 : @RRDPARAM@ underrun
GPRINT:ur@RRDIDX@:MIN:Min \: %5.11f %s
GPRINT:ur@RRDIDX@:MAX:Max \: %5.11f %s
GPRINT :ur@RRDIDX@:AVERAGE: Avg \: %5.11f %s
GPRINT:ur@RRDIDX@:LAST:Cur \: %5.11f %s\n
LINE1:or@RRDIDX@#00FFOO: @RRDPARAM@ overrun
GPRINT:or@RRDIDX@:MIN: Min \: %5.11f %s
GPRINT:or@RRDIDX@:MAX:Max \: %5.11f %s
GPRINT:or@RRDIDX@: AVERAGE:Avg \: %5.11f Ys
GPRINT:or@RRDIDX@:LAST:Cur \: %5.11f %s\n

8.8 Real-time Scheduling

As a general principle, it is prudent not to run tools (that do not need superuser
privileges) as the root user. The same principle also applies to the ODR-mmbTools,
but care has to be taken that the tools can still request real-time scheduling when
it is needed.

This is achieved by adding the following to /etc/security/limits.conf,
assuming the tools are run under the user odr.

odr - rtprio 65
odr = nice -10

If you have installed JACK with real-time privileges, you may find this has
already been configured for the ‘audio’ group, written as @audio, which should
suffice providing your desired user is a member of the ‘audio’ group.

8.9 Accessing the USRP as Non-root

Superuser privileges are not required to access USB-connected USRP devices,
but sometimes the system lacks the configuration to enable normal users to
communicate with the device. In that case, it is necessary to add a rule file
for udev. This file is included in the UHD sources, but might not have been
automatically installed. The file is called 10-uhd-usrp.rules, should be placed
into /etc/udev/rules.d/ and should contain

8.10 Authentication Support

In order to be able to use the Internet as contribution network, some form of
protection has to be put in place to make sure the audio data cannot be altered by
third parties. Usually, some form of VPN is set up for this case.

#USRP1
SUBSYSTEMS=="usb", ATTRS{idVendor}=="fffe", ATTRS{idProduct}=="0002", MODE:="0666"

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 28

8 System Environment

#B100

SUBSYSTEMS=="usb", ATTRS{idVendor}=="2500", ATTRS{idProduct}=="0002", MODE:="0666"
#B200

SUBSYSTEMS=="usb", ATTRS{idVendor}=="2500", ATTRS{idProduct}=="0020", MODE:="0666"

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 29

9 A Production Broadcast Setup

9 A Production Broadcast Setup

9.1 Outline

We have now seen all necessary elements for a complete broadcast chain, and we
will now consider what is necessary to use these elements in a 24/7 production
environment. At this point, many previously considered topics come together to
form a reliable system.

First, let us outline what our desired setup shall include:

e \We want to transmit about a dozen programmes using a single transmission
site, i.e. no SFN;

e Some audio sources are web-streams, some are using remote ODR-AudioEnc
encoders;

e One machine is used for audio encoding web-streams, multiplexing and
modulation;

e ODR-AudioEnc instances will connect over EDI to ODR-DabMux, ODR-
DabMod will use EDI to connecto to ODR-DabMux;

e All audio encoders will insert PAD with DLS, and optionally slideshow;
e We are transmitting using a USRP B200, driving a power amplifier;

e We enable both telnet and zmq remote control interfaces for management
purposes;

e The power amplifier will be driven linearly, no digital-predistortion is used;
e \We must respect the spectrum mask given by the broadcast license;

e The setup must be resilient to program failure and restart them automatically,
also informing the operator;

e \We use munin to monitor the operation of the system.

This skips over planning considerations like choice of site location, antenna
diagrams, appropriate transmit power or regulation aspects, as we assume these
topics are were already taken care of. With the outline set, we will now go through
a list of steps that will lead to a functional and reliable broadcast setup.

9.2 Setup steps

Select a computer First, a suitable computer has to be chosen for running the
tools. As this needs to be as reliable as possible, it is preferable to chose a server
designed for reliability. Because we are driving a USRP over USB, it is essential to
have a good USB controller on the motherboard. Sadly, there is no easy way to
verify this besides actually testing it. See section 6.2.1 for more details. Redundant
power supplies and the ability to use two hard drives in a RAID are also useful to
have.

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 30

9 A Production Broadcast Setup

Install the OS The operating system needs to be installed next. All the depen-
dencies for the tools need to be installed, as well as the additional tools needed for
the system: supervisord for process supervision, Munin for monitoring, logging and
logrotate configuration, proper NTP setup, configuring real-time scheduling and
additional topics discussed in section 8. If you need to prepare remote encoders,
this has to be done for all the machines you will use.

Install the tools The tools themselves need to be installed, as discussed previously.
Then you need to prepare the configuration files. If you used the dab-script
installation tool, then you will need to adapt them. Otherwise, for every programme,
create a folder for the slideshow images and gather the slides, and prepare the
interfaces for DLS text. Write the supervisord configuration files that are used
to launch all ODR-AudioEnc and ODR-PadEnc processes. Write the multiplex
configuration, with all the entries for your programmes and an appropriate supervisor
configuration. Setup ODR-DabMux munin monitoring as desired.

Verify the Multiplexer At this point you should already be able to launch the
configured tools and verify that they start, connect properly and stay running. You
can simulate process failures by killing any of the tools; the supervisor should restart
it. You could use etisnoop and other ETI analysis tools to verify that your multiplex
is valid, or listen in on the programmes by using netcat piped into dablin.!” Also
check that logging and munin monitoring works.

Configure the modulator Next configure ODR-DabMod. For improved spectrum
performance, configure it with FIR filter enabled, OFDM symbol windowing enabled
(if available), with the frequency given in your license, and start with a digital gain
of 0.5 and a low TX gain, based on your HF device. If you have a disciplined
10MHz clock reference or a GPSDO, configure accordingly. This will ensure the
modulator runs at the same rate as the rest of the transmission chain whose rate
is in turn related to NTP.

Generate an Exciter Signal Prepare the ODR-DabMod supervisor configuration.
Connect the USRP to a spectrum analyser and launch the modulator. Before
connecting the power amplifier, make sure to have a good spectrum at the USRP
TX port, and use the remote control interface to modify TX gain and digital gain
to see what RF power you can generate given the spectrum mask you want to
achieve. Placing a DAB receiver next to your setup, you should also be able to
verify that reception is possible, audio is present and that the DLS and slides are
properly transmitted. Ideally, let this setup run for a couple of days and check for
the absence of underruns. This step proves you can generate a valid exciter signal
with good characteristics.

7nc MUX 9200 | dablin_gtk should work, assuming your ODR-DabMux serves ETI over
TCP on port 9200. Replace MUX by the multiplexer IP address. See http://github.com/
Opendigitalradio/dablin for information about dablin.

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 3 1

http://github.com/Opendigitalradio/dablin
http://github.com/Opendigitalradio/dablin

9 A Production Broadcast Setup

Connect a Power Amplifier After stopping the transmission, connect the HF

device to a Band IlI filter'® to suppress harmonics, connect to the power amplifier.
Using suitable attenuation, connect the amplifier output to your spectrum analyser.

Configure a low TX gain of 30dB and a digital gain of 0.5, and power up. Again do
some experimentation with both TX gain and digital gain to find the optimal settings,
now with the amplifier. Let the amplifier warm up to operational temperature
before reaching conclusions. If your amplifier has a monitoring interface, make sure
it works and integrate it into your setup.

Tune RF Settings Also experiment with settings that have an impact on the
spectrum performance: OFDM Symbol Windowing and the FIR Filter settings. If
you have measurement equipment that can demodulate and measure MER, make
sure it is within bounds, ideally better than 25dB. You can trade-off MER against
peak-to-average power ratio using the normalise_variance and CFR settings.

Insert Mask Filter The final measurements before installation needs to be done
with the mask filter connected after the power amplifier, to ensure that the
spectrum mask is satisfied. The mask filter also needs some warm up time. It is
also advisable to use a vector-network analyser to check the mask filter's S11 and
S12 parameters.

Final Setup Finally, set up the system at your transmission site, power up to

nominal power, do coverage measurements and compare them to the simulations.

By now, you will also have to deploy all the remote encoders at the programme
originators’ studios.

Maintenance and Monitoring Running a multiplex is unlikely to be a “set up and
ignore” project. Usually you will have to do many kinds of interventions, because of
changes in your multiplex composition, requests from programmes you are carrying
(e.g. change of web-stream URL, replacement of slides), or notify them in case of
audio issues; equipment failure due to weather conditions requiring replacement;
regular system updates that should made with low impact; changes of configuration
related to announcements or service linking; modification of RF settings due to
aging of RF components or due to seasonal thermal changes. All these are inherent
to operating a broadcast infrastructure and create maintenance work that needs
to be planned for.

18For example, a filter with similar characteristics as the Mini-Circuits RBP-220W+.

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 32

Justify this value.

10 Single-Frequency Networks

10 Single-Frequency Networks

10.1 Requirements

The DAB standard has been designed to enable the creation of transmission
networks where several transmitters share the same frequency, and send the same
signal synchronously. Such networks are called “Single-Frequency Networks”. Each
transmitter needs to be fed the same multiplex stream, which must include timing
information required for synchronisation. This timing information implies that a
time reference must be installed at each transmitter.

The requirements for a SFN can therefore be summarised in three points:

e The signal must be identical for each transmitter. This requires a common
multiplexers, and a distribution network that carries the ETI to all modulators.

e All transmitters must transmit on the same frequency. The modulators
require a frequency reference.

e The signal must be transmitted at the same time, which requires a time
reference at each site. It also implies that the ETI stream must contain
timestamps.

The figure 4 shows a SFN setup with two transmitters.

Modulator USRP \+/
*| ODR-DabMod Y
Multiplexer
ODR-DabMux - TlOMHz & 1PPS
EE Includes timestamps £
into ETI stream IP Network Time f
i . standard g
Transmitter site #1 3
%]
Multiplex operator
Modulator USRP Y
" | ODR-DabMod -
TlOMHz & 1PPS
Time
i . standard
Transmitter site #2

Figure 4. This outline for a SFN shows two transmission sites.

10.2 Multiplexer Configuration

On the ODR-DabMux configuration, there are not many options that are specific
to an SFN setup. Most importantly, the timestamp feature must be enabled using
the “tist” option in the “general” section.

Furthermore, it is recommended to use the EDI transport between the multi-
plexer and the modulators, which can be enabled in the “outputs” section. Care

33

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli

Explain require-
ments on system
time, NTP

10 Single-Frequency Networks

has to be taken to have an output that slows ODR-DabMux down to nominal
rate. The EDI output alone does not enforce this. The following listing shows the
relevant options we just covered.

general {
tist true

outputs {
edi {
destinations {
tep {
protocol tcp
listenport 9201

by

enable_pft false
b
; This throttles muxing down to nominal rate
throttle "simul://"

10.3 Modulator Configuration

Since the modulator has to ensure that the three SFN requirements are satisfied,
its configuration is more complex.

We will assume, in this explanation, that one of the following USRP devices is
used: USRP2, USRP B100, USRP B200. Other devices also support the necessary
time and frequency synchronisation, but they have not been well tested. These
USRP devices can accept different sources for the reference clock:

e The default “internal” source uses the non-disciplined clock generator inside
the USRP. It is not suitable for SFN.

e The "external” source corresponds to the SMA connector on the USRP. A
10MHz signal from an external source must be connected to it.

e The optional GPSDO that can be mounted inside the USRP, and is selected

as source with the “gpsdo” setting.
For the time reference, the “pps__source” option is used. Possible values are
“none”, "external” and "gpsdo”, with analogous meaning as for the reference clock.
In case the USRP is connected to external references, the relevant configuration

would be as follows:

[uhdoutput]
refclk_source=external
pps_source=external

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 34‘

10 Single-Frequency Networks

These settings alone do not tell the modulator to enable synchronisation of the
transmission, they only select how the USRP is configured. To enable timestamp
decoding and the frame synchronisation logic in ODR-DabMod, the following
settings must also be set:

[delaymanagement]
synchronous=1

; The constant offset to be added to the TIST, in seconds
offset=2.0

The “offset” setting deserves some further explanations. The ETI data stream
contains TIST information, from which a time-stamp for each ETI frame can be
derived. Each ETI frame (24 msinterval) is therefore associated with a precise point
in time that defines the time of transmission of the corresponding transmission
frame.'® The TIST information is set to current time at ET| frame generation,

and does not take in account the propagation delay across the distribution network.

Therefore, we need to add an offset, called 9, to the TIST to define transmission
time.

ttransmission = trisT + 0

If this offset is set to a higher value, there will be a bigger delay (measured
in absolute time) between the point in time a frame is multiplexed and the point
in time the frame is transmitted. More frames therefore will be buffered in the
ODR-DabMod input, increasing robustness against network latency fluctuations.

The offset already has two functions: it compensates for network delay and
allows a trade-off between delay and robustness. But it also serves a third purpose:
When doing coverage planning for an SFN, it is necessary to be able to control
the relative delay between transmitters in the order of milliseconds. This tuning
of relative delay is included in the “offset” setting. We can therefore rewrite the
above equation as:

teransmission = tTisT + 6network + 5plannr'ng

5offset = 6network + 5planning

When using the ZeroMQ input, the max_frames_queued setting must be large
enough to contain enough ETI frames to accommodate the offset.

10.4 Using ODR LEA-M8F GPSDO board

The ODR GPSDO board integrating a u-blox LEA-M8F module can be used as
time and frequency reference for the USRP B200. The board design is available
on the Opendigitalradio website, with a bill of materials describing how to source
the components. The PCB itself can be manufactured in any PCB fab.

The module includes the correct pin header so that it can be mounted directly
onto the USRP B200, but also includes footprints for SMA connectors for other

191t is slightly more complex, because one transmission frame is composed of several ET| frames
in some transmission modes, but the principle stays the same. It suffices for this explanation that
we can derive the transmission time from the TIST information.

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 35

TODO: Add Pic-
ture

10 Single-Frequency Networks

usages. Communication between the PC and the GPS is possible through USB or
over UART through the B200.

The u-blox LEA-M8F module is a GPS disciplined TCXO module, with a one-
pulse per second and a reference clock output at a frequency of 30.72 MHz. This
is different than what the normal USRP firmware expects.

Because the UART communication protocol and the reference clock frequency
are different than for the GPSDO units Ettus supports, a modified version of UHD
is necessary. This version includes new UHD sensors, used by ODR-DabMod to
verify that the GPSDO is locked properly, and different configuration settings for
the clock management PLL inside the USRP, making the USRP compatible to the
30.72MHz reference clock frequency.

The modified UHD version is available on the ODR GitHub?® and is used in
place of Ettus’ UHD.

ODR-DabMod can be configured as follows:

[uhdoutput]

refclk_source=gpsdo
pps_source=gpsdo
behaviour_refclk_lock_lost=crash
max_gps_holdover_time=600

10.5 Using Ettus GPSDO

When using the GPSDO from Ettus, which is a Jackson Labs Firefly module, no
special UHD version needs to be installed.
The configuration is:

[uhdoutput]
refclk_source=gpsdo-ettus
pps_source=gpsdo
behaviour_refclk_lock_lost=crash
max_gps_holdover_time=600

2Onttp://www.github.com/Opendigitalradio/uhd.git

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 36

http://www.github.com/Opendigitalradio/uhd.git

11 Supervision of Transmitted Ensembles

11 Supervision of Transmitted Ensembles

11.1 Introduction

We have previously seen a way to monitor the transmission infrastructure (or at
least some of its essential parts) in chapter 8.6 about munin monitoring. These
monitoring elements give an indication about ODR-DabMux and ODR-DabMod
health from within the infrastructure itself, and may not be able to inform you
about some issues happening outside of the software tools.

Monitoring the transmitted signal at a remote site within the coverage area
can complement the internal monitoring and broaden the supervision coverage. In
the end, we can only consider the broadcast system being in an operational state if
a receiver can play all programmes, and being able to verify this automatically by
placing a receiver in the field is the only way to ensure this.

In this chapter, we will see one way to achieve this.

11.2 Welle.io Software-Defined Receiver

The welle.io?! project offers an SDR DAB receiver that can run both with a
graphical user interface for ease of use, and as a command-line tool that can be
used for automated systems. The command-line tool called welle-cli presents
an HTTP API that makes ensemble parameters and audio content available to
third party tools. Until this tool becomes part of a released version, checkout the
next branch and compile it using CMake, as described in the readme. Execute it
directly from the build folder, so that it also can access the index.html file.

welle-cli can present the ensemble data in more than one way, but we will focus
on the HTTP interface. It is enabled with the -w 7979 option, which will run
the HTTP server on port 7979. Select the channel to receive, e.g. 10A, with -c
10A. When you point your browser to http://localhost:7979, you will see a
simple web-page that shows a subset of the data available through the API. When
pressing a play button, welle-cli will start decoding the selected sub-channel and
stream it to the browser as an MP3 stream.??

Several options are available for decoding the programmes: use -D to decode
all audio and PAD simultaneously. This requires a powerful PC. Use -C to decode
the audio in a carousel, i.e. one-by-one. When using -CP the decoder remains up to
80s on a programme, but switches programmes once a slide was correctly decoded.
Compared to -C alone, this improves the likelihood of decoding slideshow at the
expense of a lower audio level update rate.

While this web-page already has some utility as-is, it mainly serves as an
illustration of what can be done with the API, where the real value of welle-cli
resides. The APl is, for the moment, quite simple:

e /mux.json contains most information in JSON format. From this JSON
you can extract the list of services, the ensemble parameters, Tll decoding
and other information.

21Project page: http://welle.io, sources on: https://github.com/AlbrechtL/welle.io

22MP3 is used because it is the only compressed audio format that is supported in all browsers.
The AAC or MP2 audio inside the ensemble is re-encoded by welle-cli using the LAME encoding
library.

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 37

http://localhost:7979
http://welle.io
https://github.com/AlbrechtL/welle.io

11 Supervision of Transmitted Ensembles

e /mp3/SID will give you a live mp3 stream of the primary component of the
given service id.

e /fic will send a data stream containing the FIC. This can be saved to
file and analysed offline with other tools, among which etisnoop (using its
-I option). etisnoop is also able to do live analysis of the FIC, e.g. with
curl -s http://localhost:7979/fic|etisnoop -I /dev/stdin whose
YAML output can in turn be processed further.

e /channel will return the currently tuned channel on receiving a GET request,
and set the channel and restart the receiver on receiving a POST.

Other HTTP URLs give back information that needs to be processed further.
See the script code inside index.html to understand how to work with it.

e /spectrum will send a sequence of float values that show the spectrum power
density of the signal.

e /nullspectrum will send a sequence of float values that show the spectrum
power density of the NULL symbol, where the TII carriers are visible.

e /constellation will send a sequence of complex float |/Q values corre-
sponding to the demodulated constellation points.

e /impulseresponse will send a sequence of float values that represent the
measured channel impulse response.

An example integration into a monitoring system is given in the welle-cli-munin.py
script. This munin plugin fetches the mux. json and converts the audio levels in a
format that munin can graph. In this way, an entire ensemble can be monitored at
once.

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 38

B Additional EDI TAGs used

A ODR-DabMux ETI file formats

ODR-DabMux supports three output formats for the ETI stream, that have been
described on the mmbTools forum website.?3

The three formats are called framed, streamed and raw.

The framed format is used for saving a finite ETI stream into a file. Each
frame does not contain any padding, and the format can be described as follows:

uint32_t nbFrames

// for each frame
uintl16_t frameSize
uint8_t data[frameSize]

When streaming data, in which case the number of frames is not known in
advance, the streamed format can be used. This format is identical to the first
one except for the missing nbFrames.

// for each frame
uintl6_t frameSize
uint8_t datal[frameSize]

The raw format corresponds to ETI(NI), where each frame has a constant size
of 6144 Bytes. The padding in this case is necessary.

// for each frame
uint8_t datal[6144]

In order to select the format, the following syntax for the -0 option is used: -0
file://filename?type=format, where format is one of framed, streamed or
raw.

B Additional EDI TAGs used

ODR defined and uses two additional EDI TAGs, whose content is described here.
ODR-AudioEnc inserts audio level metadata into the “ODRa” TAG. The TAG
item is in the following format:

TAG Name="0DRa" [4 bytes]

Length=4 [4 bytes]

Left Audio Level [signed 16-bit integer]
Right Audio Level [signed 16-bit integer]

The second EDI TAG “ODRV" contains version and uptime information for the
EDI source.

TAG Name="ODRv" [4 bytes]

Length=N+4 [4 bytes]

Version [String of N bytes, UTF-8 encoded, not zero terminated]

Uptime [unsigned 32-bit integer representing number of seconds
since program start]

23http ://mmbtools.crc.ca/component/option, com_fireboard/Itemid, 55/func, view/id,
4/catid, 13/#28

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 39

http://mmbtools.crc.ca/component/option,com_fireboard/Itemid,55/func,view/id,4/catid,13/#28
http://mmbtools.crc.ca/component/option,com_fireboard/Itemid,55/func,view/id,4/catid,13/#28

References

C

Bibliography

References

[1]

2]

3]

[4]

[5]

[6]

[7]

(8]

ETSI. ETS 300 799, Digital Audio Broadcasting (DAB); Distribution interfaces;
Ensemble Transport Interface (ETI), September 1997,

ETSI. TR 101 495, Digital Audio Broadcasting (DAB), Guide to DAB standards;
Guidelines and Bibliography, November 2000. V1.1.1. All DAB standards are
available at http://www.etsi.org/WebSite/Technologies/DAB. aspx.

ETSI. TR 101 496-2, Guidelines and rules for implementation and operation;
Part 2: System features, November 2000. V1.1.1.

ETSI. TS 102 693, Digital Audio Broadcasting (DAB); Encapsulation of DAB
Interfaces (EDI), November 2009. V1.1.2.

ETSI. TS 103 176, Digital Audio Broadcasting (DAB), Rules of implementation;
Service information features, July 2013. V1.1.2.

ETSI. EN 300 401, Digital Audio Broadcasting (DAB) to mobile, portable and
fixed receivers, October 2016. V2.1.1.

ETSI. TS 101 768, Digital Audio Broadcasting (DAB),; Registered Tables,
August 2017. V2.2.1.

Hoeg, W., and Lauterbach, T. Digital Audio Broadcasting, Principles and
Applications of DAB, DAB+ and DMB. John Wiley & Sons Ltd., 2009.

rev e4c34aa, Mon Aug 14 12:12:12 2023 +0200, Matthias P. Braendli 40

http://www.etsi.org/WebSite/Technologies/DAB.aspx

	Contents
	Acronyms
	Introduction
	Purpose
	Presentation of the Tools
	Origins
	Included Tools
	ODR-DabMux
	ODR-DabMod
	ODR-AudioEnc
	ODR-PadEnc
	ODR-EncoderManager
	ODR-SourceCompanion
	etisnoop

	Installing the Tools
	Debian Binary Packages
	Opendigitalradio-provided Installation Script
	Manual Compilation

	Interfacing the Tools
	Using files
	Using the Network
	Between Encoder and Multiplexer
	Between Multiplexer and Modulator

	Usage Scenarios
	Experimentation
	Creation of Non-Realtime Multiplex
	Modulation of ETI for Offline Processing

	Interfacing Hardware Devices
	Ettus USRP
	SoapySDR
	Other hardware

	Audio Sources
	Local Audio Card
	Using Existing Web-Streams
	Encoders at Programme Originator Studios

	Advanced Signal Processing
	Crest Factor Reduction
	OFDM Symbol Windowing
	Digital Pre-Distortion

	Data Features
	Programme-Associated Data
	FIG 1 Labels and FIG 2 Extended Labels
	Announcements
	Service Linking

	System Environment
	Processing requirements
	Launching the tools
	Logging
	Timing
	Monitoring through SNMP
	Monitoring using munin
	Monitoring using Xymon
	Installation of the Xymon Client
	Server Configuration

	Real-time Scheduling
	Accessing the USRP as Non-root
	Authentication Support

	A Production Broadcast Setup
	Outline
	Setup steps

	Single-Frequency Networks
	Requirements
	Multiplexer Configuration
	Modulator Configuration
	Using ODR LEA-M8F GPSDO board
	Using Ettus GPSDO

	Supervision of Transmitted Ensembles
	Introduction
	Welle.io Software-Defined Receiver

	ODR-DabMux ETI file formats
	Additional EDI TAGs used
	Bibliography
	References

